Hasiera / ohiko galderak

ohiko galderak

ohiko arazo batzuk laburbildu ditugu

produkzio

  • Q.

    Produktu pertsonalizatuak egiten al dituzu?

    A.

    Bai. OEM/ODM irtenbideak eskaintzen dizkiegu bezeroei. OEM gutxieneko eskaera-kopurua 10,000 pieza da.

  • Q.

    Nola ontziratzen dituzu produktuak?

    A.

    Nazio Batuen araudiaren arabera ontziratzen dugu, eta ontzi bereziak ere eman ditzakegu bezeroen eskakizunen arabera.

  • Q.

    Nolako ziurtagiria duzu?

    A.

    ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE ditugu.

  • Q.

    Doako laginak ematen al dituzu?

    A.

    10WH baino gehiagoko potentzia duten bateriak eskaintzen ditugu doako lagin gisa.

  • Q.

    Zein da zure ekoizpen gaitasuna?

    A.

    120,000-150,000 pieza eguneko, produktu bakoitzak ekoizpen-ahalmen desberdina du, informazio zehatza eztabaidatu dezakezu posta elektronikoaren arabera.

  • Q.

    Zenbat denbora behar da ekoizteko?

    A.

    35 egun inguru. Ordu zehatza posta elektronikoz koordinatu daiteke.

  • Q.

    Zenbat denbora da zure laginaren ekoizpen-denbora?

    A.

    Bi aste (14 egun).

Bestelakoa

  • Q.

    Zeintzuk dira ordainketa baldintzak?

    A.

    Oro har, % 30 aldez aurretiko ordainketa onartzen dugu gordailu gisa eta entrega baino lehen % 70 azken ordainketa gisa. Beste metodo batzuk negozia daitezke.

  • Q.

    Zeintzuk dira entrega-baldintzak?

    A.

    Eskaintzen ditugu: FOB eta CIF.

  • Q.

    Zein da ordainketa-metodoa?

    A.

    Ordainketa TT bidez onartzen dugu.

  • Q.

    Zein merkatutan saldu duzu?

    A.

    Salgaiak Ipar Europara, Mendebaldeko Europara, Ipar Amerikara, Ekialde Hurbila, Asiara, Afrikara eta beste leku batzuetara garraiatu ditugu.

Teknologia

  • Q.

    Zer da bateria?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    Zein dira lehen mailako eta bigarren mailako bateriaren arteko aldeak?

    A.

    Desberdintasun nagusia material aktiboa desberdina dela da. Bigarren mailako bateriaren material aktiboa itzulgarria da, eta lehen bateriaren material aktiboa ez. Lehen mailako bateriaren autodeskarga bigarren mailako bateriarena baino askoz txikiagoa da. Hala ere, barne-erresistentzia bigarren mailako bateriarena baino askoz handiagoa da, beraz, karga-ahalmena txikiagoa da. Horrez gain, bateria primarioaren masa-ahalmen espezifikoa eta bolumen-ahalmena esanguratsuagoak dira eskuragarri dauden bateria kargagarrienak baino.

  • Q.

    Zein da Ni-MH baterien printzipio elektrokimikoa?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    Zein da litio-ioizko baterien printzipio elektrokimikoa?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    Zeintzuk dira bateriek gehien erabiltzen diren estandarrak?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    Zein da Ni-MH bateriaren egitura nagusia?

    A.

    Nikel-metal hidruro baterien osagai nagusiak elektrodo positiboa (nikel oxidoa), elektrodo negatiboa (hidrogenoa biltegiratzeko aleazioa), elektrolitoa (batez ere KOH), diafragma-papera, zigilatzeko eraztuna, elektrodo positiboaren txanoa, bateriaren kaxa, etab.

  • Q.

    Zeintzuk dira litio-ioizko baterien egiturazko osagai nagusiak?

    A.

    Litio-ioizko baterien osagai nagusiak bateriaren goiko eta beheko estalkiak, elektrodo positiboaren xafla (material aktiboa litio kobalto oxidoa da), bereizlea (mintz konposatu berezi bat), elektrodo negatiboa (material aktiboa karbonoa da), elektrolito organikoa, bateriaren kaxa dira. (altzairuzko shell eta aluminiozko shell bi motatan banatuta) eta abar.

  • Q.

    Zein da bateriaren barne-erresistentzia?

    A.

    Bateria lanean ari denean korronteak zeharkatzen duen erresistentziari egiten dio erreferentzia. Barne erresistentzia ohmikoz eta polarizazio barneko erresistentziaz osatuta dago. Bateriaren barne-erresistentzia esanguratsuak bateria deskargatzeko lan-tentsioa murriztuko du eta deskarga-denbora laburtuko du. Barne erresistentzia bateriaren materialak, fabrikazio prozesuak, bateriaren egiturak eta beste faktore batzuek eragiten dute batez ere. Parametro garrantzitsua da bateriaren errendimendua neurtzeko. Oharra: Orokorrean, kargatutako egoeran barne-erresistentzia estandarra da. Bateriaren barne-erresistentzia kalkulatzeko, barne-erresistentzia neurgailu berezi bat erabili behar du ohm-eremuko multimetro baten ordez.

  • Q.

    Zein da tentsio nominala?

    A.

    Bateriaren tentsio nominala funtzionamendu arruntean erakutsitako tentsioari dagokio. Bigarren mailako nikel-kadmio nikel-hidrogeno bateriaren tentsio nominala 1.2 V-koa da; litiozko bateria sekundarioaren tentsio nominala 3.6V-koa da.

  • Q.

    Zer da zirkuitu irekiko tentsioa?

    A.

    Zirkuitu irekiko tentsioak bateriaren elektrodo positibo eta negatiboen arteko potentzial-diferentziari egiten dio erreferentzia, bateria funtzionatzen ez duenean, hau da, zirkuituan zehar korronterik ez dagoenean. Laneko tentsioa, terminal tentsio bezala ere ezagutzen dena, bateriaren polo positibo eta negatiboen arteko potentzial-diferentziari dagokio bateria lanean ari denean, hau da, zirkuituan gehiegizko korrontea dagoenean.

  • Q.

    Zein da bateriaren edukiera?

    A.

    Bateriaren edukiera potentzia nominalean eta benetako gaitasunean banatzen da. Bateriaren ahalmen nominalak ekaitzaren diseinuan eta fabrikazioan bateriak gutxieneko elektrizitate-kopurua deskargatu behar duela adierazten du. IEC arauak zehazten du nikel-kadmio eta nikel-metal hidrurozko bateriak 0.1C-tan kargatzen direla 16 orduz eta 0.2C-tik 1.0V-ra deskargatzen direla 20°C±5°C-ko tenperaturan. Bateriaren ahalmen nominala C5 gisa adierazten da. Litio-ioizko bateriak 3 orduz kargatu behar dira batez besteko tenperaturan, korronte konstanteak (1C)-tentsio konstanteak (4.2V) baldintza zorrotzak kontrolatzen ditu, eta, ondoren, 0.2C eta 2.75 V-tan deskargatzen dira deskargatutako elektrizitatearen ahalmenaren arabera. Bateriaren benetako ahalmenak deskarga-baldintza jakin batzuetan ekaitzak askatzen duen benetako potentziari egiten dio erreferentzia, deskarga-tasa eta tenperaturaren eraginpean nagusiki (beraz, bateriaren edukierak karga- eta deskarga-baldintzak zehaztu behar ditu). Bateriaren edukiera unitatea Ah, mAh da (1Ah=1000mAh).

  • Q.

    Zein da bateriaren hondar-deskarga-gaitasuna?

    A.

    Bateria kargagarria korronte handi batekin deskargatzen denean (adibidez, 1C edo gorago), korronte gainkorrontearen barne difusio-tasa dagoen "botila-efektua" dela eta, bateria terminaleko tentsiora iritsi da ahalmena guztiz deskargatuta ez dagoenean. , eta, ondoren, 0.2C bezalako korronte txiki bat erabiltzen jarraitu ahal kentzen, 1.0V/pieza (nikel-kadmioa eta nikel-hidrogeno bateria) eta 3.0V/pieza (litiozko bateria), askatu ahalmena hondar-ahalmena deritzo.

  • Q.

    Zer da deskarga plataforma bat?

    A.

    Ni-MH baterien deskarga-plataforma normalean bateriaren funtzionamendu-tentsioa nahiko egonkorra den tentsio-tarteari dagokio deskarga-sistema zehatz baten pean deskargatzen denean. Bere balioa deskarga-korrontearekin lotuta dago. Zenbat eta korronte handiagoa izan, orduan eta pisu txikiagoa izango da. Litio-ioizko baterien deskarga-plataforma, oro har, tentsioa 4.2 V-koa denean kargatzeari uzten dio, eta oraina 0.01 C baino txikiagoa da tentsio konstantean, gero utzi 10 minutuz eta 3.6 V-tara deskargatu edozein deskarga-tasatan. korronte. Baterien kalitatea neurtzeko beharrezko estandarra da.

  • Q.

    Zein da IECek zehazten duen bateria kargagarrietarako markatzeko metodoa?

    A.

    IEC arauaren arabera, Ni-MH bateriaren marka 5 zatiz osatuta dago. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values ​​are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Adibidez, HF18/07/49 18mm, 7mm-ko zabalera eta 49mm-ko altuera duen nikel-metal hidruroko bateria karratu bat adierazten du. KRMT33/62HH-k nikel-kadmioko bateria adierazten du; Deskarga-tasa 0.5C-3.5 artekoa da, tenperatura altuko serieko bateria bakarra (loturazko piezarik gabe), diametroa 33mm, altuera 62mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) Lehenengo letra: bateriaren elektrodo material kaltegarria adierazten du. I-litio-ioa adierazten du integratutako bateriarekin; L-litio metalezko elektrodoa edo litio aleazio elektrodoa adierazten du. 03) Bigarren letra: bateriaren katodoaren materiala adierazten du. C-kobaltoan oinarritutako elektrodoa; N—nikelean oinarritutako elektrodoa; M - manganesoan oinarritutako elektrodoa; V—vanadioan oinarritutako elektrodoa. 04) Hirugarren letra: bateriaren forma adierazten du. R-k bateria zilindrikoa adierazten du; L-k bateria karratua adierazten du. 05) Zenbakiak: Pila zilindrikoa: 5 zenbakik hurrenez hurren ekaitzaren diametroa eta altuera adierazten dute. Diametro-unitatea milimetroa da, eta tamaina milimetroaren hamarrena. Diametro edo altuera 100 mm baino handiagoa edo berdina denean, bi tamainen arteko lerro diagonal bat gehitu behar du. Pila karratua: 6 zenbakiek ekaitzaren lodiera, zabalera eta altuera adierazten dute milimetrotan. Hiru dimentsioetako bat 100 mm baino handiagoa edo berdina denean, dimentsioen artean barra bat gehitu behar du; hiru dimentsioetako bat 1 mm baino txikiagoa bada, "t" letra gehitzen zaio dimentsio honen aurrean, eta dimentsio horren unitatea milimetro baten hamarren bat da. Adibidez, ICR18650 litio-ioizko bateria sekundario zilindrikoa adierazten du; katodoaren materiala kobaltoa da, bere diametroa 18 mm ingurukoa da eta bere altuera 65 mm ingurukoa da. ICR20/1050. ICP083448 litio-ioizko bateria sekundario karratu bat adierazten du; katodoaren materiala kobaltoa da, lodiera 8 mm ingurukoa da, zabalera 34 mm ingurukoa eta altuera 48 mm ingurukoa. ICP08/34/150 litio-ioizko bateria sekundario karratu bat adierazten du; katodoaren materiala kobaltoa da, bere lodiera 8 mm ingurukoa da, zabalera 34 mm ingurukoa da eta altuera 150 mm ingurukoa da.

  • Q.

    Zeintzuk dira bateriaren ontziratzeko materialak?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    Zein da bateria ontziratzea, muntatzea eta diseinuaren helburua?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    Zeintzuk dira bigarren mailako bateriaren errendimenduaren alderdi nagusiak, oro har?

    A.

    Batez ere, tentsioa, barne-erresistentzia, edukiera, energia-dentsitatea, barne-presioa, autodeskarga-tasa, ziklo-bizitza, zigilatzeko errendimendua, segurtasun-errendimendua, biltegiratze-errendimendua, itxura, etab. Gehiegizko karga, gehiegizko deskarga eta korrosioarekiko erresistentzia ere badaude.

  • Q.

    Zeintzuk dira bateriaren fidagarritasuna probatzeko elementuak?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Zeintzuk dira bateriaren segurtasun-probaren elementuak?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    Zeintzuk dira kargatzeko metodo estandarrak?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    Zein da Ni-MH baterien karga eta deskarga estandarra?

    A.

    IEC nazioarteko estandarrak zehazten du nikel-metal hidruroko baterien karga eta deskarga estandarrak hauek direla: lehenik, deskargatu bateria 0.2C-tik 1.0V/pieza, gero 0.1C-tan kargatu 16 orduz, utzi ordu 1 eta jarri. 0.2C-tik 1.0V/pieza, hau da, bateria estandarra kargatzeko eta deskargatzeko.

  • Q.

    Zer da pultsu kargatzea? Zein da bateriaren errendimenduan?

    A.

    Pultsu kargatzeak, oro har, karga eta deskarga erabiltzen ditu, 5 segundoz ezarriz eta, ondoren, segundo 1 askatuz. Kargatze prozesuan sortutako oxigeno gehiena deskarga-pultsuaren azpian elektrolitoetara murriztuko da. Barne-elektrolitoen lurruntze-kopurua mugatzeaz gain, oso polarizatuta egon diren bateria zahar horiek pixkanaka berreskuratuko dute edo jatorrizko ahalmenera hurbilduko dira kargatzeko metodo hau erabiliz 5-10 aldiz kargatu eta deskargatu ondoren.

  • Q.

    Zer da karga kargatzea?

    A.

    Bateriaren autodeskargak guztiz kargatu ondoren bateriaren autodeskargak eragindako gaitasun-galera konpentsatzeko erabiltzen da karga etengabea. Orokorrean, pultsu-korrontearen karga erabiltzen da goiko helburua lortzeko.

  • Q.

    Zer da kargatzeko eraginkortasuna?

    A.

    Karga-eraginkortasuna bateriak kargatzeko prozesuan kontsumitzen duen energia elektrikoa bateriak gorde dezakeen energia kimikoan bihurtzen den mailaren neurriari esaten zaio. Baterien teknologiak eta ekaitzaren lan-ingurunearen tenperaturak eragiten du batez ere; oro har, zenbat eta giro-tenperatura handiagoa izan, orduan eta txikiagoa da kargatzeko eraginkortasuna.

  • Q.

    Zer da isurketaren eraginkortasuna?

    A.

    Deskarga-eraginkortasuna deskarga-baldintza jakin batzuetan terminaleko tentsiora deskargatutako benetako potentziari dagokio, ahalmen nominalari. Deskarga-tasa, giro-tenperatura, barne-erresistentzia eta beste faktore batzuek eragiten dute batez ere. Orokorrean, zenbat eta handiagoa izan isurketa-tasa, orduan eta handiagoa da isurketa-tasa. Deskargaren eraginkortasuna zenbat eta txikiagoa izan. Zenbat eta tenperatura baxuagoa izan, orduan eta txikiagoa da isurketaren eraginkortasuna.

  • Q.

    Zein da bateriaren irteerako potentzia?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    Zein da bigarren mailako bateriaren autodeskarga? Zein da bateria mota ezberdinen autodeskarga-tasa?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    Zer da 24 orduko autodeskargako proba?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    Zein da karga-egoeraren barne-erresistentziaren eta deskargatutako egoeraren barne-erresistentziaren arteko aldea?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    Zer da erresistentzia estatikoa? Zer da erresistentzia dinamikoa?

    A.

    Barne-erresistentzia estatikoa bateriaren barne-erresistentzia da deskargatzean, eta barne-erresistentzia dinamikoa bateriaren barne-erresistentzia da kargatzean.

  • Q.

    Gainkargaren erresistentzia proba estandarra al da?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    Zer da IEC estandarraren zikloaren bizitza proba?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    Zein da bateriaren barne-presioa?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    Zein da karga atxikitzeko proba estandarra?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    Zer da zirkuitu laburren proba?

    A.

    Erabili ≤100mΩ barneko erresistentzia duen hari bat guztiz kargatutako bateria baten polo positiboak eta negatiboak leherketa-kontrako kutxa batean konektatzeko, polo positiboak eta negatiboak zirkuitu laburtzeko. Bateria ez da lehertu edo su hartu behar.

  • Q.

    Zeintzuk dira tenperatura eta hezetasun handiko probak?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    Zer da tenperatura igoeraren esperimentua?

    A.

    Bateria guztiz kargatu ondoren, sartu labean eta berotu giro-tenperaturatik 5 °C/min-ko abiaduran. Bateria guztiz kargatu ondoren, sartu labean eta berotu giro-tenperaturatik 5 ºC-ko abiaduran. 130°C/min. Labearen tenperatura 30 °C-ra iristen denean, mantendu 130 minutuz. Bateria ez da lehertu edo su hartu behar. Labearen tenperatura 30 °C-ra iristen denean, mantendu XNUMX minutuz. Bateria ez da lehertu edo su hartu behar.

  • Q.

    Zer da tenperaturaren zikloaren esperimentua?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    Zer da erorketa proba?

    A.

    Bateria edo bateria guztiz kargatu ondoren, 1 m-ko altueratik hiru aldiz erortzen da hormigoizko (edo zementuzko) lurrera kolpeak ausazko norabideetan lortzeko.

  • Q.

    Zer da bibrazio esperimentua?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    Zer da inpaktu proba bat?

    A.

    Bateria guztiz kargatu ondoren, jarri hagaxka gogor bat horizontalean eta bota 20 kiloko objektu bat altuera jakin batetik haga gogorrean. Bateria ez da lehertu edo su hartu behar.

  • Q.

    Zer da sartze-esperimentu bat?

    A.

    Bateria guztiz kargatu ondoren, pasa diametro zehatz bateko iltze bat ekaitzaren erdigunetik eta utzi pina baterian. Bateria ez da lehertu edo su hartu behar.

  • Q.

    Zer da suaren esperimentua?

    A.

    Jarri guztiz kargatutako bateria suaren aurkako babes-estalki paregabea duen berogailu-gailu batean, eta ez da hondakinik igaroko babes-estalkitik.

  • Q.

    Zein ziurtagiri gainditu dituzte konpainiaren produktuek?

    A.

    ISO9001:2000 kalitate sistemaren ziurtagiria eta ISO14001:2004 ingurumena babesteko sistemaren ziurtagiria gainditu du; produktuak EBko CE ziurtagiria eta Ipar Amerikako UL ziurtagiria lortu du, SGS ingurumena babesteko proba gainditu du eta Ovonic-en patente lizentzia lortu du; aldi berean, PICCk konpainiaren produktuak onartu ditu munduan Scope underwriting.

  • Q.

    Zer da Erabiltzeko prest dagoen bateria?

    A.

    Erabiltzeko prest dagoen bateria Ni-MH bateria mota berri bat da, konpainiak abian jarritako karga atxikitzeko tasa handikoa. Biltegiratzeko erresistentea den bateria bat da, lehen eta bigarren mailako bateriaren errendimendu bikoitza duena eta bateria nagusia ordezkatu dezake. Hau da, bateria birziklatu daiteke eta geratzen den potentzia handiagoa du Ni-MH bigarren mailako bateria arrunten denbora berean gorde ondoren.

  • Q.

    ​​Why is Ready-To-Use (HFR) the ideal product to replace disposable batteries?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    Zein neurri hartu behar dira bateria erabiltzean?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    Zein da bateria kargagarri estandar ezberdinen arteko aldea?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    Zein da bateriaren deskarga-abiadura? Zein da ekaitzaren askatzeko orduko tasa?

    A.

    Deskarga tasa errekuntzan zehar deskarga-korrontearen (A) eta ahalmen nominalaren (A•h) arteko abiadura erlazioari dagokio. Orduko tasa deskargak irteerako korronte jakin batean ahalmen nominala deskargatzeko behar diren orduei dagokie.

  • Q.

    Zergatik da bateria bero mantentzea neguan filmatzen duzunean?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    Zein da litio-ioizko baterien funtzionamendu-tenperatura-tartea?

    A.

    Karga -10—45 ℃ Deskarga -30—55 ℃

  • Q.

    Konbinatu al daitezke gaitasun desberdinetako bateriak?

    A.

    Ahalmen ezberdineko bateria zaharrak eta berriak nahasten badituzu edo elkarrekin erabiltzen badituzu, baliteke ihesak egotea, zero tentsioa, etab. Kargatze-prozesuan dagoen potentzia-diferentziaren ondorioz gertatzen da, eta horrek bateria batzuk gehiegi kargatzea eragiten du kargatzean. Bateria batzuk ez daude guztiz kargatzen eta deskargan edukiera dute. Bateria altua ez dago guztiz deskargatuta, eta gaitasun baxuko bateria gehiegi deskargatuta dago. Horrelako zirkulu zoro batean, bateria hondatuta dago, eta ihesak edo tentsio baxua (zero) du.

  • Q.

    Zer da kanpoko zirkuitu labur bat, eta zer eragin du bateriaren errendimenduan?

    A.

    Bateriaren kanpoko bi muturrak edozein eroaletara konektatzeak kanpoko zirkuitu laburra eragingo du. Ikastaro laburrak ondorio larriak ekar ditzake bateria mota desberdinentzat, hala nola elektrolitoen tenperatura igotzea, barneko airearen presioa handitzea, etab. Airearen presioak bateriaren estalkiaren tentsio iraunkorra gainditzen badu, bateriak ihes egingo du. Egoera honek bateria larriki kaltetzen du. Segurtasun balbulak huts egiten badu, eztanda bat ere eragin dezake. Beraz, ez ezazu bateria kanpotik zirkuitu laburtu.

  • Q.

    Zeintzuk dira bateriaren iraupena eragiten duten faktore nagusiak?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Bateria agortu ondoren edo denbora luzez erabiltzen ez bada aparatuan gorde al daiteke?

    A.

    Tresna elektrikoa denbora luzez erabiliko ez badu, hobe da bateria kentzea eta tenperatura baxuko leku lehor batean jartzea. Hala ez bada, etxetresna elektrikoa itzalita badago ere, sistemak bateriak korronte baxua izango du, eta horrek ekaitzaren bizitza laburtu egingo du.

  • Q.

    Zein dira bateria biltegiratzeko baldintza hobeak? Epe luzerako biltegiratzeko bateria guztiz kargatu behar al dut?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    Zer da bateria estandarra?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% ​​cadmium), and the electrolyte is acidic, saturated cadmium sulfate aqueous solution, which is saturated cadmium sulfate and mercurous sulfate aqueous solution.

  • Q.

    Zeintzuk dira bateria bakarraren zero tentsioaren edo tentsio baxuaren arrazoi posibleak?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    Zeintzuk dira bateria-paketearen zero tentsioaren edo tentsio baxuaren arrazoi posibleak?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    Zeintzuk dira kontrol-metodoak bateria gehiegi kargatzea saihesteko?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    Zeintzuk dira bateria edo bateria kargatu ezin daitezkeen arrazoiak?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Ez al duzu aurkitu nahi zenuena?Contact

itxi_zuri
itxi

Idatzi kontsulta hemen

erantzun 6 orduko epean, edozein galdera ongi etorria da!